A Model Existence Theorem for Infinitary Formulas in Metric Spaces
نویسنده
چکیده
We prove a Model Existence Theorem for a fully infinitary logic LA for metric structures. This result is based on a generalization of the notions of approximate formulas and approximate truth in normed structures introduced by Henson ([7]) and studied in different forms by Anderson ([1]) and Fajardo and Keisler ([2]). This theorem extends Henson’s Compactness Theorem for approximate truth in normed space structures to infinitary formulas.
منابع مشابه
The Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کاملCoincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions
The purpose of this paper is to present some coincidence point and common fixed point theorems for multivalued contraction maps in complete fuzzy metric spaces endowed with a partial order. As an application, we give an existence theorem of solution for general classes of integral inclusions by the coincidence point theorem.
متن کامل$G$-asymptotic contractions in metric spaces with a graph and fixed point results
In this paper, we discuss the existence and uniqueness of fixed points for $G$-asymptotic contractions in metric spaces endowed with a graph. The result given here is a new version of Kirk's fixed point theorem for asymptotic contractions in metric spaces endowed with a graph. The given result here is a generalization of fixed point theorem for asymptotic contraction from metric s paces to metr...
متن کاملExistence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph
The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...
متن کاملContractive gauge functions in strongly orthogonal metric spaces
Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al. [On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper, we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach' fixed point theorem and Walter's theorem. Also, we give an example showing that our main theor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008